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Solutions to the Boltzmann Equation in the
Boussinesq Regime
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We consider a gas in a horizontal slab in which the top and bottom walls
are kept at different temperatures. The system is described by the Boltzmann
equation (BE) with Maxwellian boundary conditions specifying the wall tem-
peratures. We study the behavior of the system when the Knudsen number e. is
small and the temperature difference between the walls as well as the velocity
field is of order E, while the gravitational force is of order e2. We prove that
there exists a solution to the BE for t E(0, t) which is near a global Maxwellian,
and whose moments are close, up to order e2, to the density, velocity and
temperature obtained from the smooth solution of the Oberbeck-Boussinesq
equations assumed to exist for t< t.

KEY WORDS: Boltzmann equation; hydrodynamic scaling; Boussinesq
equation; Rayleigh-Benard convection.

1. INTRODUCTION

In the study of thermal convection phenomena the following system plays
a paradigmatic role: a viscous heat conducting fluid between flat horizontal
plates with the lower plate maintained at a temperature greater than the
upper one. When the temperature difference between the plates is small, the
stationary state is one in which the fluid is at rest with a linear temperature
profile. When the temperature difference is made larger, the gravitational
buoyancy force acting on the light, higher temperature fluid below, over-
comes the effects of viscosity and a new stationary state of thermal Rayleigh-

1 Dipartimento di Matematica, Universita degli Studi di L'Aquila, Coppito, 67100 L'Aquila,
Italy.

2 Dipartimento di Fisica, Universita di Roma Tor Vergata, 00133 Rome, Italy.
3 Departments of Mathematics and Physics, Rutgers University, New Brunswick, New Jersey,

08903.

1129

0022-4715/98/0300-1129$15.00/0 C 1998 Plenum Publishing Corporation



Benard convection sets in. In typical experimental situations the variations
of temperature and density are small and the system is described in the
Boussinesq approximation under which the Navier-Stokes equations
reduce to the Oberbeck-Boussinesq equations (OBE). This approximation,
which is formulated on a phenomenological basis, gives quantitatively
correct predictions in most cases.(1)

A justification of this approximation, based on introducing a scaling
which leaves the Rayleigh number invariant is given in ref. 2 (see also
refs. 3, 4). This approach follows the general strategy of taking into account
the invariance, under appropriate scaling, of the hydrodynamical equations.
Such considerations allow, for example, to derive the incompressible
Navier-Stokes equations from the compressible ones, as well as from micro-
scopic and kinetic models.

The main aim of this paper is to derive the OBE starting from the
Boltzmann equation (BE), which describes gases on the kinetic level, inter-
mediate between the microscopic and the macroscopic. To go from the
kinetics BE to a hydrodynamical one it is necessary to consider situations
in which the Knudsen number £, the ratio between the mean free path and
the size of the slab, is very small. It is well known that the inviscid Euler
equations correctly describe the behavior of this system for times of order
e-1 in the limit e->0.(5) To obtain the OBE we need to consider longer
times, of order e - 2 , so as to get the effects of viscosity and thermal conduc-
tivity. To make this possible, we have to study the system in the incom-
pressible regime, corresponding to macroscopic velocity fields of order e.(6)

This scaling would appear, at first sight, to require that the force G be
scaled as e3 to be consistent with the incompressible regime, i.e. to get a
finite force term in the equation for the velocity field. However, the case of
a conservative force is special from this point of view in that larger forces
are permissible. In fact we find that G has to be scaled as e2 in order to
keep the Rayleigh number finite.

We take the walls to be at fixed temperatures and impose a no-slip
boundary condition for the velocity field at the hydrodynamic level. This is
modeled at the kinetic level by assuming that each particle colliding with
a wall is reflected with a random velocity, distributed according to the
equilibrium distribution at the temperature of that wall, i.e. we assume
Maxwellian boundary conditions.

Our solution of the BE is given in terms of a truncated expansion in e
whose leading term in the bulk is a global Maxwellian. The term of order e,
denoted by f1, determines the hydrodynamic quantities which are close,
up to order e2, to the density, velocity and temperature solutions of the
OBE. Near the boundary, in a thin layer of size e, the hydrodynamical
approximation is not correct and we provide a detailed description of the
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solution in this region. The initial datum is chosen to match the expansion
up to order e2, to avoid a treatment of the initial layer which is more or
less standard.

The validity of the expansion is established up to a time t such that the
OBE have a sufficiently regular solution by estimating the remainder. This
expansion technique goes back to Hilbert, Chapman and Enskog; a rigorous
proof of the hydrodynamic limit is given for the Euler case in ref. 5 and
for the incompressible Navier-Stokes case in ref. 6. In particular, in the
absence of gravity, the results of the present paper extend the ones of ref. 6
to the case of a fluid confined in a domain with walls at different tem-
peratures modeled by Maxwellian boundary conditions. The main techni-
cal difficulty for such systems, even in the absence of an external force, is
in dealing with the terms coming from the boundary conditions in the
estimate for the remainder. The approach proposed in ref. 5, and used also
in ref. 6, is based on the estimate of some Sobolev norm of the solutions.
But in the presence of the boundaries this cannot be used because the
derivatives of the solution may become singular at the boundaries. We
avoid the estimates of the derivatives by first looking for L2 estimates and
then improving them to Loo estimates. This technique was already used in
refs. 7 and 8 which concern essentially one-dimensional problems, i.e. a
compressible fluid in a slab with the walls held at fixed temperatures under
the action of a force parallel to the walls in the stationary regime. Since we
consider here the fully three dimensional time dependent case we need to
modify the method to bound the Loo norm of the remainder by using a new
method based on a result in ref. 9. This is presented in Section 4 and in the
Appendix. A formal expansion including boundary layer corrections was
given earlier in ref. 10.

The case with a force perpendicular to the walls presents extra dif-
ficulties stemming from the fact that we need good properties of the
derivatives with respect to vz, the vertical component of the velocity, to get
the exponential decay of certain boundary layer terms and to control the
remainder. Unfortunately, the derivative with respect to vz is singular at
the boundaries at v, = 0. To overcome this difficulty we have to decompose
the force into a part acting in the bulk only and a part acting only near the
boundaries, decreasing to zero at a distance of order e. The Milne problem
we consider for the boundary layer terms involve these short range forces
and can be solved by using the result in ref. 11, where it is proven that the
vz derivative is bounded in L2 and Loo norms locally, away from the boun-
daries. This is enough to control the terms appearing in the equation for
the remainder and in the Milne problems for the higher order corrections.

While the above results are independent of the nature of the solution
of the OBE, we are only able to construct stationary solutions to the
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Boltzmann equation which correspond, at the hydrodynamic level, to the
behavior of the purely conducting stationary solution of OBE. This is due
to the fact that the methods in this paper are based on the perturbation of
a global Maxwellian and therefore require that the temperature difference
between the plates be small, corresponding to having a small Rayleigh
number. We expect to be able to construct the purely conductive solution
of the Boltzmann equation for any Rayleigh number, even when the basic
hydrodynamic solution becomes unstable, by perturbing a Maxwellian
corresponding to the hydrodynamic solution. This involves many technical
difficulties and will be discussed in a forthcoming paper. The hope is to
extend these results to the convective solutions which appear for larger
values of the Rayleigh number.

2. HYDRODYNAMIC DESCRIPTION

We consider an incompressible heat-conducting viscous fluid in a
horizontal slab A = T2

L x (— 1, 1), where T2
L is the two dimensional torus of

size L. The acceleration of gravity is the vector G = (0, 0, — G). We specify
the temperature on the boundaries z = + 1 as:

The total mass of the fluid is specified to be m with p = m|A|-1 the corre-
sponding mass density. We will assume T_ > T+. Denote 0= T— T_ the
deviation of the temperature from T_ and set

The equations describing the evolution of the velocity and temperature
field, u and 8, are the Oberbeck-Boussinesq (OBE) equations (see refs. 4,
12), which we write as

Here n is the kinematic viscosity coefficient, K the heat conduction coef-
ficient, a = T-1 the coefficient of thermal expansion,



is kept fixed. We refer to ref. 2 for the detailed (formal) derivation of (2.2),
(2.3), (2.4), (2.5) from the compressible Navier-Stokes in the limit e->0,
while in next sections we will provide its rigorous derivation from the
Boltzmann equation.

This scaling is a natural one in order to derive the OBE because, under it,
the Rayleigh number Ra defined as

It can be proved that if u0 and 00 are smooth functions of x (i.e., with
Sobolev Hs(A)-norm finite for some s sufficiently large), then there is t
depending on the initial and boundary data such that the system (2.2),
(2.3), (2.4) has a unique solution, at least as smooth as the initial data, for
0 < t < t. We do not give the proof of this statement which is rather
standard and refer to ref. 4 for details.

The regime under which the OBE are expected to be valid correspond
to a low Mach number, a sufficiently weak gravity and a small difference
between the temperatures of the top and bottom walls. To make this
precise we introduce a space scale parameter e and rescale the variables as
follows:

for any (x, y) e T2
L and any positive t.

Moreover, let r = p — p be the deviation of the density from the
homogeneous density p, let r = r + pG(1 +z)/T_. Then r is determined by
the Boussinesq condition

for any x e A, with div u0 = 0. The boundary conditions for this problem
are

and p is the unknown pressure which arises from the incompressibility con-
straint. The initial conditions are
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We note that our equations do not coincide exactly with the usual
Oberbeck-Boussinesq (OBE) equations as given in refs. 4, 12 because of
the term proportional to G in the boundary conditions for 9 and of the
quadratic term in G in the definition of p. In the usual experimental condi-
tions (see ref. 1) such terms are much smaller than the others, so one can
neglect the effect of the variation of the density due to the gravitational
force. If we denote by ps and Ts the solution of the stationary problem

with Ps = psTs and boundary conditions (2.1) the approximation corre-
sponds to setting P s ~ P ( 1 ) = p(1) T(1) . In this way we would recover the
usual OBE. We finally remark that the Boussinesq condition (2.5), which
is assumed as an "equation of state" in the usual discussions of the
Boussinesq approximation (see ref. 3, 12), in our approach is just a conse-
quence of the scaling limit (2.6).

3. KINETIC DESCRIPTION

We consider the BE for a gas between parallel planes. We keep the
notations of Section 2. To model the hydrodynamic boundary conditions
we choose the so called Maxwellian boundary conditions: when a particle
hits the walls of the slab (z = — 1 or z = 1) it is diffusely reflected with a
velocity distributed according to a Maxwellian with zero mean velocity and
prescribed temperatures T_ and T+ respectively. In the language of kinetic
theory this means that the accommodation coefficient equals one. The
above prescription implies the impermeability of the walls, namely no par-
ticle flux across the boundary is allowed. We introduce as scale parameter
£ the Knudsen number. The height of the slab is 2e - 1 , hence in rescaled
variables z e [ — 1, 1 ]. we take for simplicity periodic conditions in the x, y
direction, and call

The BE rescaled according to (2.6) is

with



Namely, a± represent the outgoing (from the fluid) fluxes of mass in the
direction z. The impermeability condition implies that the normalization of

where we have introduced the notation <f> —fR3 f ( v ) d v . Condition (3.6)
and the normalization of M ± imply:

with y>0 independent of e, according to the scaling (2.6).
The quantities a± must be chosen in such a way that the imper-

meability condition of the walls is assured, i.e.

normalized so that fvy <o |vy| M ± ( v ) d v = 1. The temperature T+ is
assumed to satisfy

with

The precise form of fo will be specified below where it will be seen that it
cannot be given arbitrarily if one wants to avoid a detailed analysis of the
initial layer. However, we assume the initial datum f0 non negative and
normalized to the total mass which we set to 1.

The boundary conditions are:

where S2 = {w e R3| w2 = 1}, B is the differential cross section and v', v'*
are the incoming velocities of a collision with outgoing velocities v, v* and
impact parameter w. We confine ourselves to the collision cross section
B(w, V) = | V.w| corresponding to hard spheres ref. 13.

The initial condition is
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the solution to (3.2) stays constant and therefore we will look for solutions
to (3.2) which are normalized to 1 as the initial datum.

The macroscopic behavior should be recovered in the limit s going to
zero. More precisely we expect that for e small the behavior of the solution
(3.2) is very close to the hydrodynamical one, in the sense that it can
be described by a local Maxwellian with parameters which differ from con-
stants by terms of order e, and that these terms are solution of the OBE.
At higher order in e there will both be kinetic and boundary layer correc-
tions. Therefore we look for a solution of the form

where M is the global Maxwellian

If we put (3.8) in the BE (3.2) we see immediately that f1 has to satisfy

where £ is the linearized Boltzmann operator. (3.9) implies that f1 has to
be in Null £, which means that it is a combination of the collision invariants
MXi with Xi(

v) = 1) vi, (v2 — 3T_)/2, for i = 0, i= 1, 2, 3 and i = 4 respec-
tively, suitably normalized to form an orthonormal set, in L 2 ( M ( v ) - 1 dv).
Hence we have

The functions t , ( t , x) and /or r, u, 0 will satisfy equations to be determined.
To write the conditions for fn we decompose them into two parts Bn and
b ±, representing the bulk and boundary layer corrections. The latter are
significantly different from 0 only near the boundary. The Bn have to satisfy
for n = 2,..., 7

where B0 = M and B1 = f1.



Moreover we have to scale back to microscopic coordinates around
z = ± l . Setting z ± = e - 1 ( 1 + z ) so that z ± e [ 0 , 2 e - 1 ] we have that
G±(z±) is zero for z± e [28 ,2e - 1 ] . The boundary layer corrections
relative to the wall z= ±1, b+, are chosen to satisfy, for n = 2,..., 5, the
equations

with G° and G± smooth functions such that for some 8 > 0

We note that the condition f1 =B1 means that there is no boundary
layer correction to the first order in e. To make this compatible with (3.4)
we need to assume that u(x, y, — 1 , t ) = u(x, y, 1, t) = 0, 0(x, y, —1, t ) = 0,
0(x, y, 1, t)= — 2yT_ for any (x, y ) e T L and any t>0. We remark that
M + ef1, when evaluated for z = 1 is not proportional to the Maxwellian
M+, even with the previous assumptions, but differs from it for terms of
order e2 which will appear in the corrections of higher order.

To construct the boundary layer terms we decompose the constant
gravity force G = (0, 0, — G) into three parts: a bulk part G0 and two
boundary parts G± which are different from zero in the bulk and near the
walls respectively. Their definition is
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where we have put

and p + = p + er( 1).
Finally the equation for the remainder is

with

and A given by

The boundary conditions for these equations have to be chosen in
such a way as to satisfy (3.4) and (3.6) for fe. Since we are interested in the
case T+ = T_( l — 2 e y ) it is easy to satisfy (3.4) up to the first order in e,
because M is already a Maxwellian whose temperature and velocity field
are chosen to fit with M_ , while M + ef1 is close to be proportional to M+

at z = 1, up to terms of order e2.
From the second order on we have to use boundary layer terms to fit

boundary conditions. In fact, as we will see later, the Bn , for n > 2, do not
reduce to a± M±. The idea is to introduce at one of the boundaries, say
z = 1, the correction b+

2 so that B2 + b2 is proportional to M+ for vz <0.
On the other hand, the same has to be done at z = — 1 and f2 is modified
by b2

- also. This changes again f2 at z = 1 by non Maxwellian terms.
However, since b2 decays exponentially fast, the modification is exponen-
tially small in e-1. Therefore we impose on the fn the following boundary
conditions:



because the Maxwellian M does not depend on x and t. This is equivalent
to

to ensure the normalization of the solution. Note that this condition on R
is satisfied because it is true at time t = 0.

Outline of Solution

The equations for the /„ are coupled in a complicated way and have
to be solved in the proper sequence, which we now outline. The hydro-
dynamical part of the bulk terms is determined by the solvability condi-
tions for (3.11), that we get by multiplying (3.11) by xi, i = 0...4, integrating
over velocity and using the fact that < Q ( f , g ) x i > =0. The solvability con-
dition for (3.11) with n = 2 is

The initial conditions for R(x, v; 0) are chosen to be R(x, v; 0) = 0,
z=+ l for simplicity. The initial values for the fn's are partly determined
by the procedure below, so that only their hydrodynamical part can be
assigned arbitrarily. To remove such restrictions one would have to include
an analysis of the initial layer, which we skip to make the presentation sim-
pler. Finally we impose the conditions

Finally, to fulfil (3.4) we impose the following conditions on R:

with the functions y +
e ( v ) exponentially small in e-1 and such that

(y +
E V z > =0, to be specified later. Moreover
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The first one is the usual incompressibility condition while the second
one becomes the Boussinesq condition (2.5), when one defines r = r +
p ( G / T _ ) ( 1 + z ) . Once (3.24) are satisfied, we can deduce from (3.11) with
n = 2 the following expression for B2, where L -1 denotes the inverse of the
restriction of 3? to the orthogonal of its null space

The solvability condition for (3.11) with n = 3 is

and this produces the equations for u and 9. Let us fix i= 1, 2, 3 in (3.26).
Then the first term gives the time derivative of pu. The second one reduces
to — Gr after integrating by parts. Finally we write

The first term, as is well known, gives rise to the dissipative and transport
terms in the second of (2.2), while the second one is the second order
correction to the pressure P2. The result is

Using the Boussinesq condition, the definitions of r and 0 and the relation
between P2 and p of Section 2, we find (2.2)2 as in Section 2, with 77 given
by

To get the equation for the temperature, it is convenient to replace x4

in (3.26) by x4 = 1\2 [ v2 — 5T_)]. A simple computation, using the Boussinesq
condition, yields:



Since the coefficients t(2) can be chosen arbitrarily on the boundaries
we use them to compensate q2. To satisfy the impermeability conditions
we have to choose t(2) = 0 on the boundaries. The coefficients of the
hydrodynamic part of B2 will, for i= 0, be determined by the compatibility

with boundary condition (at z =0) prescribing the incoming flux as the
opposite of the non hydrodynamic part of B2 at z= — 1. The results in
ref. 11 tell us that the solution approaches, as z - -> oo a function q2 in
Null L- . Thus we set b2=h — q2, which will go to zero at infinity
exponentially in z - and will be the boundary layer correction we are
looking for.

In conclusion, we have

Summarizing our results so far: we have shown that, assuming u, p, 0
satisfy the QBE (2.2), (2.3), (2.4), (2.5) up to a time t, the coefficients ti

entering in the definition of f1 are determined. Therefore, once initial and
boundary conditions for the OBE are specified, f1 is completely determined
as a function of (t, x, v).

On the other hand the hydrodynamic part of B2 is not yet determined,
but, by (3.28), div t ( 2 ) is determined in terms of r. Moreover, a combination
of t(2) and t4

(2) contributes to the pressure p which is determined by the
OBE, so that these parameters are not independent.

The non-hydrodynamic part of B2 depends on the derivatives of r, u,
9 which are in general different from zero on the boundaries. Therefore B2

violates the boundary conditions and we need to introduce b2 to adjust
the boundary conditions. We choose b2 by solving, for any t>0, the
Milne problem

Finally, equation (3.26) with i = 0 gives

Collecting the above results we get (2.2) with K given by

Boltzmann Equation in Boussinesq Regime 1141



In ref. 11 the following result is proved.

Theorem 3.1. (1) Suppose that for r>3 and some a'>0 there
are finite constants c1 and c2 such that

Consider the following Milne problem:

Iterating this procedure it is possible to find all fn. To prove that the
terms in the expansion have the right properties we use the results in ref. 11
for the solutions of the Milne problem with a force, that we state below.

Let F(z) = —a V ( z ) be a force vanishing at infinity such that V(x) and
its derivative are bounded. Define

condition for n = 4. These are time-dependent non-homogeneous Stokes
equations (linear second order differential equations) in a slab, together
with the b.c. t(2) = q21 , i= 1, 2, 4. Then t(2) is found up to a constant that
is chosen so that the total mass associated to f2 vanishes. Finally we get
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4. RESULTS IN THE TIME-DEPENDENT CASE

The main properties of the fn's are summarized in Theorem 4.1 below.

Theorem 4.1. Suppose that there is t>0 such that p(t), 0(t) and
u(t) are smooth solutions of QBE, with | | V u ( t ) | | H s + | | V 0 ( t ) | | H s < q for suf-
ficiently large s and 0<t < t. Then it is possible to determine functions fn,
n = 2,..., 7 satisfying, for 0 < t < t, Eq. (3.11) and the conditions

for any a < c.

(3) If y :=supz e ( 0 , + o o )[ |F' |+ |F|] exists and is finite then for any
S > 0 and for y sufficiently small there exists a finite constant Cs such that

for some constant c/ and i = 3. Then there are finite constants c and c', such
that

for any a < c'.

(2) Suppose that for fixed r > 3, l> 1 and some B > 0

Then there is a unique solution f eL o o(R+ x R 3 ) to the Milne problem
(3.29)-(3.33). Moreover there exist constants c and c' such that / verifies
the conditions:
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where M+ =exp[ - V+(z + )] M+,_ -dz+V+ = e2G+, B2 is the non-hydro-
dynamical part of B2 given by B2 = £-1[v. Vf1 + G. VVM- Q( f 1 , f1)].
Finally q 2 ( v ; t) is the limit at infinity of the solution b2 of the same Milne
problem with boundary condition B2, as explained in the previous section.

The force G+ has been chosen smooth and vanishing as z+ goes to
+ oo in such a way as to satisfy the assumptions on the force in Theorem
3.1. Furthermore, for e small the force term (and its derivative) in (4.7) is
small. The boundary conditions verify (3.34) by the property of Jz-1 (see
ref. 13). Hence, by Theorem 3.1, M - 1 / 2 b2

+ satisfy (3.35)-(3.39).

Proof. The proof is achieved by showing that every step of the proce-
dure described in the previous section is correct, namely that the conditions
on the source and on the boundary conditions for the Milne problems that
we have to solve at each step are satisfied. Moreover we need to check the
solvability conditions for the Stokes equations.

Step 1. The first step is finding the boundary layer term b2 solving
for any (x, y) e T2 the Milne problem for g2 = b2 /M+:

for h < 1 / ( 4 T _ ) . Here

Moreover, for any £ > 3 there is a constant c such that:
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In the same way we construct b2 imposing the boundary condition in
z- = 0 given by B2(x, y, -1, v; t).

Step 2. As explained above the coefficients ti
(2), i=1,2,4 of the

hydrodynamical part of B2 are determined by the compatibility condition
for n = 4

where

Proceeding as in the determination of the Boussinesq equation, we find
now a set of three linear time-dependent non-homogeneous Stokes equa-
tions for ti

(2). The non-homogeneous terms depend on the third order
spatial derivatives of f1. We note that the non linear terms in the hydro-
dynamic equations come from the quadratic term Q ( f 1 , f1) in (3.25), while
in (4.9) appears a term linear in B2. General theorems for the Stokes equa-
tion assures the existence of a solution for the chosen boundary and initial
conditions.

Step 3. Once B2 is completely determined, (4.9) gives the non-hydro-
dynamical part of B3, B3. As before, we introduce the terms b3 to compen-
sate B3 on the boundaries z= ± 1. The term b3 is found as a solution of
the Milne problem for g3: ^/M+ g3 = b3

with source

and with boundary condition

We have to check that the source satisfies the conditions of Theorem 3.1.
The condition (3.33) is true due to the properties of Q and to (3.32)

for b2 . The terms of the form Q(f, g) are bounded by means of the Grad
estimates



and it is bounded because of (3.39), Theorem 3.1, that applies as shown in
Step 1.

The first term in r.h.s. of (4.13) is bounded by observing that the time
derivative of 62

- is a solution of the Milne problem we get by differentiating
(4.7) with respect to time with boundary condition d,b2

-(0, v; t), vz>0,
t>0.

The second term in r.h.s. of (4.13) is zero by construction for
O<z < S so that

Since T_ = T + ( 1 +2ey) we have that |e - 1(M- M+ )/^/W_|r_1 < C | ( ( v 2 /
T_) + 1 ) ^ M | r _ 1 .

The functions f1, and b2
+ have bounded norm, hence the third term in

(4.11) is bounded. The first term in (4.11) is bounded by using the properties
of the derivatives with respect to x and y of b2 assured by Theorem 3.1.

Step 4. B3 is constructed as in Step 2. Instead the Milne problem for
b4 has to be discussed since in the source appear also derivatives of b2

+

with respect t and vz. We have for ^M + g4 = b4
+ that

The second term in (4.11) is bounded in the same way

where |.| r :=|. | r , 0 , so that
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Finally the condition (3.33) is satisfied since the velocity flux of the
derivatives of b2 with respect to time and velocity is zero.

The terms /„ with higher n are constructed and bounded in the same
way. As a consequence, it is easy to see by using the preceding arguments
that the term A in (3.15) satisfies the bound (4.5) and (4.2). This concludes
the proof of Theorem 4.1.

To complete the construction of a solution to the BE, we have to
show that the remainder is bounded in norm |.|l,h defined in (4.6).
The remainder has to satisfy (3.15) and the conditions (3.20) and (3.21)
with <yn,e

±
Bvz> =0. Moreover R has to satisfy

which implies aR = ± f v z < 0 v z R ( ± 1 , v ; t) dv. To construct the solution of
(3.15), (3.20), (3.21) and (4.14) we first deal with the following linear initial
boundary value problem: given D on T2 x [ -1, 1 ] x R3, find R such that

with the same initial and boundary conditions as before.
Once one obtains good estimates for the solution of this linear

problem, the non linear problem is solved by simple Banach fixed point
arguments, for small e. This allows to conclude the existence of the solution
fe and its convergence to the solution of the OBE.

Solution of Linear Problem

We consider the linear problem (4.15) with a given D satisfying
<y z D> =0. Put R = MO. Therefore the equation for O is

where D = M- 1/2D, M = M exp[ eG(z + 1 )/T_ ] and

The boundary and initial conditions are
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where

Introduce the L2 norm as

We now give the L2 bound for O and then we provide the Loo bound.

Theorem 4.2. The solution of the linear problem (4.16), (4.17)
satisfy the bound

with

Proof. Multiplying (4.16) by O and integrating on Q x R3 we have

To bound the boundary terms in the second line of (4.19), we proceed as
follows. We consider first the more difficult term



In Appendix we prove that the r.h.s. of (4.23) is bounded as follows:
let t1 be any time in (0, t]. Then

The same argument shows that ( v z O 2 ( x , y, — 1, v; t)> is non positive
because

Using this bound and (4.21) in (4.20) we find

Using the relation between M in z= +1 and M+, the normalization of
M+, and the relation T+ = T _ ( 1 — 2ey), we get, after a straightforward
computation,

By the Schwartz inequality,
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We recall the following crucial properties of the linearized Boltzmann
operator L (see for example ref. 13):

with K an integral operator and v a smooth function. Moreover, for hard
spheres, there are two constants v0 and v1 such that

(2) There is a constant C>0 such that

with the usual decomposition O = O + 0, with P and <P the non-
hydrodynamical and the hydrodynamical part of 0 respectively.

To estimate the operators L1 and L2 we will use the following estimate
on the collision operator Q (see for example ref. 14): for any Maxwellian
M and for any y e [ — 1, 1 ]

This inequality and the bounds on the fn's imply the following bounds:

Note that the presence of the product ||^v0|| ||$|| depends on the fact
that L1 and L2 are both orthogonal to the collision invariants.

We integrate (4.19) in time between 0 and t1, and recall that
0(x, v,0) = 0. With the notation < P , ( . ) = <t>( ., t), we get



A and Q are defined in (3.1).
We call p 1 ( x , v ) the characteristics of the equation

Loo Bound

Let us give some notation:

In conclusion, by the use of the Gronwall lemma, for £ sufficiently small,
we get:

is valid for any positive e, x, y. We apply it with x = ||v $ ||, y = ||<P|| and
suitable constants c1 and c2. We get

The last line in (4.29) derives from the bound (4.24). The first term in the
second line is due to the bounds (4.27) and (4.28). Moreover
||M- 1/2f1|| < C by the regularity of the solutions of the macroscopic equa-
tions for 0<t<t and \ \M - 1 / 2E 7

n = 2 f n | | <C by Theorem 4.1.
The following elementary inequality

Boltzmann Equation in Boussinesq Regime 1151
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given by

and, for fixed t, define t as the last time, before t, in which the charac-
teristics passing by (x, v) at time t is in a point (z, w) such that ( t - , z, w) e
dS (see ref. 15, p. 44-48).

Given smooth functions H, v on S and h in dS, consider the initial
boundary value problem

The solution of this problem is written as

We introduce the norm

and denote by Lp ,q the corresponding space. We define the operator Ns as

We assume that v corresponds to the collision rate for hard spheres, i.e.

Then Ns satisfies the estimate



where

Hence the result.
This Lemma will be used also for p = + oo and q > d to control the

(oo, q)-norm of N's f in terms of (q, oo)-norm of the solution of (4.36).
We write (4.16), (4.17) in the form (4.34), (4.35) with

we get

With one more change of variables

where we have put i = s — t. We have under the change (4.42)

Proof. Consider the following change of variables v -> y:

Boltzmann Equation in Boussinesq Regime 1153

The following lemma allows to bound the Lp,q norm of Ns f in terms
of the Lq,p norm of f. It is a generalization to the case with a constant force
of the theorem of Ukai and Asano.(9)

Lemma 4.3. Assume x, veRd and let 1<q, p<+oo and a =
( 1 / q ) - ( 1 / p ) . Then
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Here the v' are defined analogously to v as

Finally we set v = v + ev1 + £2v2 and it is immediate to check that v satisfies
the assumption (4.39).

We have the following

Theorem 4.4. Let <P be the solution of the problem (4.34), (4.35),
with v, H and h given as before. Then, for any q >d, 1/2 — 1 /d< 1/q,

Proof. By (4.36) we get

In the last term we substitute for <& its expression (4.36) so that

To estimate the terms containing K we use the following Lemma whose
proof is given in ref. 9.

Lemma 4.5. Let Ls
Y the spaces of functions f(v) such that

with y e R. Let 1 < s< r < oo and n 0 = 1 — ( 1 / s ) + ( 1 / r ) . Then the operator K
mapsL; into Ly +n if ( 1 / s ) - ( 1 / r ) <(2/d) and n<n0.
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Substituting (4.47) in (4.46) we get

Using (4.40) and the bound f t ds exp[ - e - 2 v 0 ( t - s ) ] < Ce2, the
first term in the r.h.s. of (4.48) is estimated as Cs2 sup0<t<t ||H'||oo,q. The
second term is dealed with by using (4.40) to get rid of the time integrals
so that we gain a factor e2. By Lemma 4.5 the operator K maps Loo in itself
so that the final bound for this term is again Ce2 sup0<t<t ||H'||oo,q. We
bound the last term in (4.48) by using Lemmas 4.3 and 4.5 as follows.

To get the first inequality we have used (4.40) and Lemma 4.3. The
second step is based on Lemma 4.5 to replace the Loo norm on the velocity
with the L2 norm, by taking r = + oo, s = 2, y = 0. We pass from the second
line of previous inequality to the third one using again Lemma 4.3 to
exchange the exponents for space and velocity introducing a factor
( e / ( s - s ' ) ) d B , with B= 1/2-1/q, while (4.40) produces the factor
exp[—v0(s —s')/e2]. Finally Lemma 4.5 again, with r = q, s = 2 and y = 0,
gives the bound in terms of the L2 norm in space and velocity.

To get convergence of the /-integral we need Q<B< 1/d, so we have
to choose q > d, 1/2 — 1/d<1/q. From the time integrations we get a factor



We remark that the characteristics p which is on the boundary z = 1
with velocity v such that vz>0 at time t- — t had to start either from some
point in the bulk or from the boundary z = — 1. In the first case we
have h = 0 in (4.51) otherwise we get h = 0(x,y, — 1 , v ; t ) for t z >0. In

Equation (4.36) allows to express aR in terms of P(x, y, — 1 , v , t ) ,
vz<0 and H. In fact by (4.36)

If r_ = t then h = <P(x, v; 0) = 0; if T_<t then h = <P(x, y, ± 1, v; t), in
correspondence of v z < O and ( p _ T ( x , v ; t ) ) z = ± 1 . The boundary condi-
tions on 0 are given by (4.17) with

Now we control the boundary terms. First, we observe that by using
(4.40) and Lemma 4.5 as we did for the second term in (4.48) we can
estimate the second term in (4.50) as C sup0<s<t ||Ns h||oo,q . Hence we are
left with the first term in (4.50). We recall that the meaning of the bound-
ary condition h is as follows: define

£4-2(u+u) with u = d/q, u1 = dp. Combined with the prefactor e(u+u) it
produces e4-(u+u). But u +u' =d/2 so that the factor we gain is e 4 - d / 2

In conclusion
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the latter case it is shown in the Appendix that the integral f ' t -dsv
( < p s - t ( x , y, — 1 , v ) ) is bounded from below by Ce. As a consequence, we
can estimate the exponential in the first row of (4.51) as e-c/E.

We exploit the same argument to deal with aR and use (4.36) to repre-
sent <t> on the boundary z = — 1. There is a difference with respect to the
previous case: due to the presence of the force the characteristic q> which
is on the boundary z = — 1 with velocity v, v z<0 at time t- — t can start
from the bulk, from the boundary z = 1 with negative v. or from the
boundary z— — 1 with positive v2. In the Appendix it is shown that in the
latter case the exponential factor in the first row of (4.51) allows to gain a
factor Ce2.

We discuss explicitely the bound for aR. The case of aR is dealt with
in the same way. By using the representation (4.36) we get

where ||C||OO,Q :=sup^x,y e an [f dv Cq]1/q. The first step is obtained from the
inequality
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As explained before, to get a bound of the last term in (4.52) in terms of
the L2 norm we need to iterate the procedure and use again the representa-
tion formula (4.36) in the last term

In this way all the terms in (4.53) are analogous to terms already discussed
in the first part of the proof but the term containing h. The problem with
this term is that it can be estimated in terms of the Loo norm of 0 but we
need to gain a small factor and Ns- cannot provide it. Hence we have to
repeat the previous argument and use (4.36) to represent 0 on the bound-
ary in terms of the function evaluated on the point on the boundary
reached after a finite amount of time.

We get

By using the properties of Ns and K and the bounds on the integral in the
exponential as discussed before the second term in (4.54) is bounded by
e2||*||oo,q.

Finally we get



By (4.40) and Lemma 4.5 (used with r= +00 and s replaced by q), for
q > d/2 we have
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Now we can apply all the previous arguments to get the following estimate
for the boundary term in (4.50)

Finally by (4.50) and (4.30) we have

This concludes the proof of Theorem 4.4.
To get the L°° bound for <P we need to estimate the || . || oo,oo norm in

terms of the || . || 2,2 of <&. Lemma 4.5 implies the following

Theorem 4.6. Define

Let 0 be the solution of (4.16), (4.17). Then if r>3

Proof. By (4.36) we have



Hence, for e small

Finally the regularity property of the hydrodynamic solution and Theorem
4.1 give

where Q + is the gain term of the collision operator.
By using (4.59) and the definitions of Ki, i= 1, 2 we get

The boundary term |h|0< C |aR |oo + |aR |oo + |C|o has been estimated
before by using (4.56). The containing H' will be bounded using the Grad
estimate

Hence

Because of the factor (1 + | v | ) r in the definition of |.|r and of the bounded-
ness of the space domain, if r > 3 we have

By (4.57) we get
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Finally we improve the | . |0 norm to | . |r norm by means of the Grad
estimate and the representation (4.36) of <t>

By (4,59), iterating the previous inequality we get, for e small,

By putting together (4.61) and (4.62) we eventually get

so proving the theorem.

Nonlinear Case

We conclude our discussion by proving the following

Theorem 4.7. There is e0 such that, if e < e0 for 0 < t < t there is a
unique solution to the initial boundary value problem (3.15), (3.20), (3.21)
verifying the following: for any positive integer f there is a constant c>0
such that

for any h < 1 / ( 4 T _ _ ) .

Proof. Let 0 = RM-1/2. Then (3.15) becomes

with

and A given by (3.17).
By Theorem 4.6, for d = 3 we have that



with M ± ( v ) given by (3.5) and a± now independent on x, y and t, given
by (3.7), so that f e satisfies (3.6).

We construct the solution in the form (3.8) with fn to be determined
according to a bulk and boundary layer expansion. These terms are com-
puted as in the time-dependent case and a theorem similar to Theorem 4.1
can be stated also in this case. We only discuss the remainder equation

The boundary conditions are:

The term ( decays exponentially fast in e. Hence, by Theorem 4.1 the
estimate (4.63) follows.

5. THE STATIONARY CASE

The main difference between the results for the time dependent case of
previous Section and those for the stationary case we are going to present
is in the restriction to small values of the Rayleigh number, we need to deal
with the stationary problem. Therefore, at the hydrodynamical level we are
confined to the purely conductive solution. We hope to be able to extend
our method to the convective solutions which appear for larger values of
the Rayleigh number. The proof follows by arguments quite similar to
those presented in refs. 7, 8 to which we refer the reader for more details.
In this section we only give a sketch of the proof.

We start by recalling the stationary setup. We look for one-dimen-
sional solutions, namely for solutions not depending on x and y so that the
equation we consider is

By the arguments in ref. 7 we then get

By (4.12)
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Sketch of the Proof. We follow the strategy of the previous section:
first we get a L2 bound and then the Loo bound. In the present case we

Then there are A 0 > 0 and e 0>0 such that, if A < A 0 and e<e0, there
is a stationary solution to the boundary value problem above such that

with r and 0 the thermal conduction solution of the OBE corresponding to
the temperatures T_ and T+ = T(1 — 2eA), namely

The theorem below summarizes the results about the existence of
stationary solutions.

Theorem 5.1. Let M be the Maxwellian with parameters p, T
and vanishing mean velocity. Put

The boundary conditions on R are given by (3.20), (3.21). R satisfies the
normalization condition (3.22) and the vanishing flux condition

with J2?(1) and £(2)R defined in (3.16). Moreover, A is given by

because its solution requires a different technique. This equation has the
form
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In this way there is no normalization condition on the function 0. The
quantity aR represents both the outgoing flux of fR at z = — 1 and the

The non linear term is given by

where C+ = — En = 1 en-3y+
n,e and BR = aR —aR . the linear operator N<t> is

defined by

so that (3.22) is satisfied. Therefore we have aR = ( T _ / 2 n ) - 1 / 2 p - 1 I ( < t > ) . It
is easy to check (see ref. 8) that the function <P has to solve the following
boundary value problem:

with

cannot use the initial condition to satisfy the normalization condition.
Therefore, we satisfy the conditions (3.22) and (5.6) by choosing the con-
stants aR along the lines of ref. 8.

Observe that (5.6) is satisfied for any ze [ — 1, 1], once it is satisfied
at one point, because f dv vzR(z, v) does not depend on z in consequence
of (5.4).

We write R as
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integral of R over z and v. The constant BR is determined so that R satisfies
condition (5.6) at the point z= 1, i.e.

To construct the solution of (5.11), we first consider the following
linear boundary value problem: given D on [ — 1, l ] x R 3 and £* on
{ve R3 s.t. v z < 0 } , find R satisfying

and the last three conditions (5.11).
As usual we introduce <P and <Z> the hydrodynamic and the non-hydro-

dynamic part of 0 respectively. Multiplying (5.15) by <t> and integrating
over velocity, we have

By integrating over z, using (4.25), (4.27) and (4.28) we get

Here ||*||2 = f 1_1 dz f dv j2v. One can check (see ref. 8) that the l.h.s. of this
inequality is positive. Therefore we get

Using the inequality xy <kx2 + y2/4k with x= ||<i>||, y = e ||0|| and a
suitably small k, we find

To bound the hydrodynamical part, we multiply (5.15) by v,Y,,
yi = M xi, i = 2 and integrate over [ - 1, z] x R3.



Note that the only point where we need X small is in the step from (5.18)
to (5.19).

Combining (5.16) and (5.19) we get

so that for A small enough we get

with B a non-singular matrix. This allows to estimate Hi and hence <P as

Therefore

Since < v z ( P / M > =0, we can decompose <P as

Using (5.16) this inequality becomes

Following ref. 7, pp. 68-69, we can prove that pi have the following
estimate:

Denoting p i ( z ) = < v z ¥ i £>, we get
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Loo Bounds

To write the integral form of the linear equation (5.15) we follow the
approach in ref. 11. the notation is as follows: The "total energy" is
E(z, v) = v2/2 + V(z) with V(z) = eG(z + 1). The lines with fixed E are the
characteristic curves of the equation

For E(z, v) > V(z') we define

Moreover call z + (z, v) the function implicity defined by the equation

Finally put

Consider the equation

with boundary conditions

The solution of (5.21) can be written in an integral form as: for v, >0:



The definition of T is given in a similar way.
By slightly modifying the proof in ref. 11 to take into account the

factor s it is possible to prove the following Lemmas (see also ref. 7).

where

We can write the previous formulas in a compact form as

for vs<0 and E> V ( 1 ) :

for vz<0 and E< V ( 1 } )
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Finally (5.30) implies

Noting that ||v-1/2D|| < | v - 1 D | 3 and using (5.19) we get

and h ± ( ± 1 , v ) given by (5.11). Combining these Lemmas and using
the properties of the operator L one gets

Theorem 5.4. There exists a constant C such that for any r < 3 the
solution of (5.15) verifies

We write (5.14) in the form (5.21) with

Here

Lemma 5.3. For any d > 0 and for any r > 2 there is a constant Cs

such that

Here

Lemma 5.2. For any integer r>O there is a constant c such that
the integral operator T satisfies the following inequality,
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Using now the form of Hin (5.28)

Finally, using again the Schwartz inequality and recalling the expression of
BR in (5.14) we get

we get

with s ± = £ ± M - 1 / 2 and |s± | = supvy < o,z | s ± ( v ) | . By (5.25), using the
Schwartz inequality and

The term containing h involves BR which still depends on <P. To
estimate it, we follow the method in ref. 8.

Equation (5.25) allows to express BR in terms of T H and the restric-
tion of P( — 1, v) to vz > 0. We have the estimate
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so proving (4.24).
We use (4.36) to express the value of the function <t> in the point z = 1.

We remark that the characteristics q which is on the boundary z = 1 with
velocity v, vz>0 at time t- — t had to start at time 0 either from some
point in the bulk or from the boundary z = — 1. In the first case the
boundary term h in (4.36) is zero otherwise we get P(x', y', — 1 , v ' ; t ) ,
v'z > 0 where

where H , ( . ) : = H ( . , t ) is defined in (4.44). In fact by substituting the
expression of H, we get

APPENDIX

In this appendix we show how to get L2 estimates for the boundary
terms. We will prove (4.24). To this end it is enough to prove

This concludes the proof of Theorem 5.1.

which concludes the analysis of the linear case. The non-linear problem is
dealt with by a fixed point argument and the final result is

Theorem 5.5. There exist A > 0, EO > 0 and a constant C such that,
if y < A0 and e<e0 there is a solution to the boundary value problem
(3.20), (3.21), (5.4), (5.6) such that for any r>O

As a consequence (5.31) becomes
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Hence

By the boundary condition on $ we have

so that by Schwartz inequality we get

But aR is expressed again in terms of the value of £ on the boundary
z = — 1 and for negative z-component of the velocity, namely

We observe now that the integral

when evaluated on the characteristics going from one boundary to another
is bounded from below. In fact we can use the bound on v, v(x, v) >
c0(l + |v|) to check that this integral for the trajectory perpendicular to the



where

Equation (A.3) implies

To get the previous expression we have replaced x', y' and t with x, y and
t, since the respective Jacobians are equal to one.

In this way we still do not have any explicit estimate of the boundary
term in (A.2), because it contains the values of P at z= — 1 for negative vz

which is still unknown. However, we can use the representation (4.36)
again to express it back in terms of the function in z = 1 so to get a set of
coupled equations for the boundary terms. Hence we consider

boundary, namely vx = vy = 0, vz > 0 is greater than e times the width of the
slab and this is the worst case since for the other trajectories is even
greater. As a consequence, we can estimate the exponential in the first row
of (A.2) as e - c / e . In conclusion we get
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The other trajectories give a larger value to this integral.

where (x", y " , — 1 , v " ) = (pt-_,(x, y , — 1 , v ) and p' is the characteristics
starting from -1 with v" > 0.

These two formulas correspond to the case in which the characteristics
starts from z = 1 with velocity vz'< 0 and to the case in which it starts from
z= — 1 with v">0 and then come back to the boundary z= — 1. This
second possibility appears because of the presence of the force: the kinetic
energy is such that the trajectory does not reach the opposite boundary but
instead goes back after a time depending on the balance between kinetic
energy and potential energy. In that case the total length l for a trajectory
with vx = 0 = vy is given by

For vz<0, E<0

We have: for vz<0, E>0

As above we use (4.36) to find a bound for S . Define
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Finally

We have that

Equation (A.9) implies for B the following bound

using that v",= — v,. The function <t> in the integral in (A.8) is evaluated for
z = — 1 and v, > 0 so that we can express it in terms of aR as follows, for
v. > 0:

Boltzmann Equation in Boussinesq Regime 1175

Hence the square of the second term in the first row of (A.7),
integrated on time, space and velocity, is bounded as



To conclude the argument we now provide an estimate for H. By the
Schwartz inequality applied to the integral over s, we have

Putting together (A.5) and (A.14) we get

where 2P = 3f + + 3? . This implies, for e small,

Summarizing we can write

The contribute of the first term in (A.7) to S is
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Consider the term

and the following change of variables (t, vz) -> (£, w)

whose Jacobian is e |vz|
-1. Denote also by t(£) the inverse of £(t). We have

Hence

ACKNOWLEDGMENTS

Research supported in part by AFOSR Grant 95-0159, and by CNR-
GNFM and MURST. We also wish to thank the warm hospitality of the
IHES, Bures-sur-Yvette, where some of this work was done.

REFERENCES
1. P. G. Drazin and W. H. Reid, Hydrodynamic Instability (Cambridge Univ. Press,

Cambridge, 1981).



1178 Esposito et al.

2. R. Esposito and R. Marra, Incompressible fluids on three levels: hydrodynamic, kinetic,
microscopic, Mathematical Analysis of Phenomena in Fluid and Plasma Dynamics (RIMS,
Kyoto, 1993).

3. J. M. Mihaljan, A rigourous exposition of the Boussinesq approximation applicalbe to a
thin layer of fluid, Astrophys. J., 136:1126-1133 (1962).

4. D. D. Joseph, Stability of Fluid Motions (Springer-Verlag, Berlin, 1976).
5. R. E. Caflisch, The fluid dynamic limit of the nonlinear Boltzmann equation, Commun. on

Pure and Applied Math. 33:651-666 (1980).
6. A. De Masi, R. Esposito, and J. L. Lebowitz, Incompressible Navier-Stokes and Euler

limits of the Boltzmann equation, Commun. Pure and Applied Math. 42:1189-1214 (1989).
7. R. Esposito, J. L. Lebowitz, and R. Marra, Hydrodynamic Limit of the Stationary

Boltzmann Equation in a Slab, Commun. Math. Phys. 160:49-80 (1994).
8. R. Esposito, J. L. Lebowitz, and R. Marra, The Navier-Stokes limit of stationary solu-

tions of the nonlinear Boltzmann equation, J. Stat. Phys. 78:389-412 (1995).
9. S. Ukai and K. Asano, Steady solutions of the Boltzmann equation for a flow past an

obstacle, I. Existence, Arc. Rat. Mech. Anal. 84:249-291 (1983).
10. C. Bardos, R. Caflisch, and B. Nicolaenko, Thermal layer Solutions of the Boltzmann

Equation, Random Fields: Rigorous Results in Statistical Physics. Koszeg (1984), J. Fritz,
A. Jaffe and D. Szasz, eds. (Birkhauser, Boston, 1985).

11. C. Carcignani, R. Esposito, and R. Marra, The Milne problem with a force term, preprint
(1996).

12. J. Boussinesq, Theorie analytique de la chaleur (Gauthier-Villars, Paris, 1903).
13. C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases

(Springer-Verlag, New York, 1994)
14. F. Golse, B. Perthame and C. Sulem, On a boundary layer problem for the nonlinear

Boltzmann equation, Arch. Rat. Mech. Anal. 104:81-96 (1988).
15. N. B. Maslova, Nonlinear evolution equations: kinetic approach (World Scientific, 1993).


